印模复制技术:实现螺纹的无损检测

F20 螺纹印模 ornemental strips ornemental strips

Last updated:

螺纹是一种呈螺旋状的凹槽,也就是我们常说的螺杆螺纹。当螺纹位于圆柱体内部时,我们称之为内螺纹或攻丝孔;反之,位于外部的则称为外螺纹。

在工业领域,螺纹、孔和丝锥的检测是一项常规任务,因为大量零部件都包含这类几何结构。确保其尺寸精度符合标准是生产过程中的重中之重。然而,这项工作执行起来并非易事,尤其是在面对非标定制的螺纹时。

具体来说,受限于螺距的几何形状、尺寸,或内螺纹的孔口直径,检测设备有时难以触及零部件的特定角落,从而给测量带来挑战。

在加工零部件并需要验证其尺寸精度时,传统的量规并非总是理想之选。正是在这种情况下,轮廓投影仪的优势便凸显出来。

不同类型的螺纹

标准化螺纹

全球范围内存在多种螺纹标准,其主要区别在于几何形状(如平顶、圆顶)和螺距尺寸(如公制、英制)。

以下是工业领域最常见的一些螺纹标准:

  • 公制螺纹SI(国际单位制):牙顶和牙底均为平面,牙型角为60°,直径和螺距单位均为毫米。
  • 美制螺纹(UNC和UNF):牙顶和牙底均为平面,牙型角为60°。直径以英寸为单位,螺距以每英寸的牙数计算。
  • 惠氏螺纹:这是一种源自英国的螺纹标准。牙顶和牙底呈圆形,牙型角为55°。直径以英寸为单位,螺距同样以每英寸的牙数计算。

这三种螺纹标准在工业领域最为普及,对其检测必须严格遵循现行规范(如ISO标准),以确保合规性。

与检测内螺纹(丝锥孔)相比,检测标准化的外螺纹通常有更多可选的测量方法。

对于外螺纹而言,检测空间更为开阔,几乎不受限制,您可以自由选用各种测量工具,甚至能将整个零部件放置在轮廓投影仪上进行高精度检测。

使用量规可以快速判断零部件合格与否,但这终究是一种相对主观的目视检查。相比之下,轮廓投影仪能够提供更为精确、客观的测量数据。

特殊螺纹

部分行业会采用其专有的螺纹标准,以满足特定工艺或装配需求。

尽管这些螺纹也已形成标准,但对其进行便捷的质量控制往往更为复杂。即使标准各异,检测时遇到的挑战却大同小异。

在某些应用中,检测要求极高的精度,目的不仅在于验证螺纹的合规性,还要监控其磨损情况。对于磨损监控,传统的检测方法通常需要拆卸和搬运零部件,过程既繁琐又昂贵。而在这种场景下,轮廓投影仪的价值就体现出来了——它无需拆卸,即可完成精确测量。

螺纹检测:有哪些解决方案?

螺纹规

针对标准化螺纹,有一种专门的检测工具叫做螺纹规。

这种工具形似一把瑞士军刀,集成了多种规格的螺纹样板。检测时,若样板能与被测螺纹完美贴合,则表明螺纹合格。

操作员通过目测即可判断螺纹是否符合相应标准。然而,这种方法的精度远不及轮廓投影仪。

螺纹量规

螺纹量规的工作原理与螺纹规相仿。它本身就是一个标准螺纹件,用于检验您的螺纹能否顺利旋入或套上。

操作十分简单:如果螺纹无法正常旋合,则判定为不合格。这种“过/不过”的检测方式虽然高效,但无法像轮廓投影仪那样提供详尽的测量数据。

数字成像检测

当您追求精确的测量数据时,传统量规便显得力不从心。此外,它们也无法为您的检测过程提供可追溯性记录。

如今,数字成像技术已广泛应用于各种几何形状的检测,其中也包括螺纹(尤其是外螺纹)。轮廓投影仪便是这项技术的典型代表。

利用这类检测设备,对外部螺纹进行高精度测量可谓轻而易举。然而,一旦涉及到攻丝孔等内部特征(尤其是那些难以直接触及的内部尺寸),检测便会异常困难。这恰恰是传统光学检测方法的局限所在。

复制转移检测法

这项技术或许并不广为人知,但却极为高效。其核心理念是:利用一种中间介质(即复制品或印模)来“转移”需要检测的表面特征,从而实现异地检测。

使用P35检查API螺纹
使用P35检查油连接件

当您需要对内螺纹进行尺寸检测时,能够在中间复制品上进行操作会非常实用,其优势包括:

  • 无需耗费时间拆卸、搬运零部件至检测设备处,然后再重新组装。
  • 能够在不损坏零部件的前提下检测内螺纹,并将其完整形貌复制出来,以便于在数字影像仪或轮廓投影仪上进行测量。
  • 得益于上述两大优势,可以实现系统性的质量控制,或进行更频繁的磨损监控。

复制转移检测是一种极其经济、快捷且易于实施的方案,对于那些零部件生产成本高昂的行业而言,其应用价值尤为突出。

通过印模复制进行螺纹检测

印模复制技术是制作内外螺纹复制品的理想选择。

事实上,即便检测外螺纹看似简单,采用印模复制法有时在时间和成本上也更具效益。

在石油、天然气和能源等行业中,螺纹通常位于笨重或难以移动的大型设备上,这种情况便是最好的例证。

工作原理是什么?

在Plastiform,我们采用双组分产品,其初始状态可分为液态、糊状或膏状。

当两种组分混合接触后,产品会发生固化,并在固化后依然保持极佳的柔韧性与弹性。正是凭借这一特性,即便是提取内螺纹的复制品也变得轻而易举。

利用提取出的复制品,您不仅可以轻松完成测量,更重要的是,还能通过保存该复制品,为检测过程留下可追溯的物理凭证。这些复制品随后可使用轮廓投影仪进行测量,以获取精确且可重复的测量结果。

如何为我的螺纹检测选择合适的Plastiform产品?

选择哪款产品,通常取决于以下几个因素:

  1. 预期的应用场景:尺寸检测、表面状况检查、粗糙度分析等。
  2. 复制品的脱模难度——脱模越困难,对复制品的柔韧性和抗拉伸强度要求就越高。
  3. 产品的初始稠度:是需要能够流动的液态产品,还是能够保持形状的糊状产品,亦或是可以用手直接塑形的膏状产品。

螺纹检测是Plastiform系列产品的一项核心应用。因此,有几款产品因其在特定检测场景下的卓越表现而备受推崇,尤其是在与轮廓投影仪配合使用时。

公称直径小于20mm的螺纹

对于小直径螺纹,只有高流动性和高渗透性的液态产品才能胜任。F20 兼具制作此类复制品所需的所有特性,并且其出色的柔韧性也确保了在有脱模约束的情况下依然能轻松取出。

内螺纹(内部)印模

对于公称直径大于20mm的内螺纹,需要区分两种应用场景。第一种,如果您希望获得螺纹的完整复制品。在这种情况下,必须充分考虑脱模难度。通常,我们会推荐使用 F20

第二种,您可以考虑只制作螺纹的部分复制品。如果您希望使用轮廓投影仪轻松地投射其轮廓,这将是一个非常巧妙的策略。制作局部复制品可以显著降低脱模难度,从而允许您选用更易于操作的产品进行检测(尤其是在您希望使用双刃切刀来获取清晰轮廓时)。对于这种情况,F50 将是理想之选。

外螺纹(外部)印模

对于外螺纹,最好选用不会流淌的产品。因此,糊状和膏状产品是绝佳的解决方案。根据您的操作偏好,可以在 P35M70 之间进行选择。

这两种产品都可以用双刃切刀进行切割,因此能轻松通过数字影像仪或轮廓投影仪进行分析。

螺距小于0.25mm的螺纹

最后一种特殊情况是螺距。如果要对极细的螺距进行检测,我们强烈推荐使用高流动性的液态产品。如果零部件的公称直径本身也很小,这一点就显得尤为关键,因为液态产品更容易注入和填充。


F20 再次成为这种情况下的不二之选!

结论

总而言之,印模复制品是执行内外螺纹检测的绝佳工具。

尽管市面上有多种替代技术,但印模复制法依然是其中实施起来最快捷、简便且经济的方案。在 工业4.0 的时代背景下,它的价值尤为凸显:不仅测量数据本身可追溯,复制品实物也为检测过程提供了无可辩驳的物理追溯凭证。

我们建议选用专为螺纹检测而优化的产品,如 F20、F50、P35 或 M70。这些产品的取模和脱模过程都十分简便,并且能够与包括轮廓投影仪在内的现代测量设备无缝协作。

当与轮廓投影仪配合使用时,这些复制品能够对内外螺纹进行高度精确且可重复的测量。通过分析复制品的横截面,轮廓投影仪可以提供详尽的螺距、角度和形状等参数信息,而这些信息通常难以甚至无法直接在原始零部件上获取。

相关文章

F30 Visual 用于表面缺陷的目视检查

目视检测 – 是什么?如何实施?

目视检测 (VT)(亦称视觉检测)是指利用肉眼,并通常辅以光学仪器对材料表面和工件进行检查,以此在不损坏组件的情况下识别不连续性。 它是当今机械工程领域中最基础的无损检测方法。 我过去常把目视检测当作事后才考虑的工作。对我来说,“检测”意味着使用卡尺或粗糙度测试仪之类的仪器。我曾认为仅凭肉眼观察零件过于主观,没什么用处。 目视检测是质量控制的第一道防线。 如果执行得当,它可以检测出绝大多数表面缺陷迹象,包括点蚀、腐蚀、接头错位以及异物污染。 在石油和天然气、航空航天以及结构工程等严苛领域,正确执行的目视检测通常是识别缺陷最经济高效的方式。 因为如果问题一眼就能看出来,就不必再做一整套测试,对吧? 在这篇文章中,我将分享如何确切地实施一套结构化的目视检测程序。 我们将涵盖直接观察和远程观察的基础知识、所需的设备(从简单的镜子到数字显微镜),以及满足国际标准所需的程序。我们还将讨论如何记录您的发现,使其具备可追溯性并符合审核要求。 让我们近距离了解一下这种出色的检测策略! 什么是目视检测? 目视检测 (VT) 是一种无损检测方法,通过直接观察或借助光学仪器检查材料表面和组件,以此在不损伤零件的情况下探测表面不连续性、裂纹、腐蚀和缺陷。它是制造业、航空航天及油气行业质量控制和无损检测项目中的主要筛查手段。 在质量保证领域,我们将 VT 归类为无损检测方法 (NDT),因为该过程不会改变、施压或损坏被检查的零件。 它被认为是检测项目中的第一道防线。 在动用复杂的射线或超声波设备之前,您只需观察零件即可发现明显的问题。 虽然听起来很简单,但目视检测是一个严谨的过程,能够检测出广泛的瑕疵。 专业的检测员可以识别出表面不连续性(如裂纹或气孔)、尺寸偏差以及结构异常。 它也是在生产后期引发问题之前,捕捉涂层缺陷和装配错误的主要方法。 直接目视检测 直接目视检测发生在检测员可以将眼睛置于测试表面的特定距离内时。 大多数标准,如 ASME 第 V 卷,要求眼睛距离表面在 24 英寸 (600 mm) 以内,且观察角度不小于 30 度。这确保您足够接近,能真实看到缺陷而非远距离猜测。 为了有效执行此操作,您需要充足的照明。 行业标准通常要求最小光照强度为 1000 勒克斯(大致相当于光线充足的办公室或专业的检测室)。 虽然“裸眼”是主要工具,但检测员经常使用放大镜… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/mu-shi-jian-ce-shi-shen-me-ru-he-shi-shi/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

统计过程控制 (SPC) – 定义与意义

统计过程控制 (SPC) 是一种利用统计技术来监控和控制制造过程的方法。 我过去常常认为,如果将机器设置得极其完美,它应该能无限期地生产出完美的零件。如果尺寸出现偏差,我会立即微调设置来修复它。但事实证明,这对任何人都毫无帮助。 根据每一次测量结果不断微调机器,通常只会放大问题。 我意识到每一个过程,无论多么精确,都有其心跳(一种自然的变异节奏)。为了在不抓狂的情况下管理这一点,我们需要统计过程控制 (SPC)。 它的目的是告诉你什么时候真正偏离了航向,什么时候只是遇到了路上的一个小颠簸。 目标直截了当:效率。 通过使用 SPC,您可以确保您的过程发挥其最大潜力,生产出更多符合规格的产品,并显著减少浪费。 您不再依赖昂贵的终端检测,而是开始在错误发生之前进行预防。 您可能会听到这个术语与统计质量控制 (SQC) 互换使用,或者看到它在关于质量控制的更广泛指南中被提及。 虽然它们同根同源,但 SPC 主要关注输入和活动过程,而不仅仅是最终输出。 在这篇文章中,我想帮助您建立一个关于 SPC 的坚实思维模型。我们将涵盖: 我保证,这比看起来要容易。 什么是统计过程控制? 大多数人认为质量保证就像期末考试。您制造产品,然后在生产线的最后进行检查。 如果不合格,就报废。 但坦率地说,这种做生意的方式极其昂贵。当您发现缺陷时,时间和材料已经浪费了。 统计过程控制 (SPC) 彻底颠覆了这种模式。 我们不再等待成品,而是使用统计方法来实时监控生产过程。目标是从检测(发现坏零件)转变为预防(从一开始就阻止其产生)。 这很像烤饼干。 传统的检查是在饼干出炉后尝一尝看是否烤焦了。SPC 是在烘烤时监控烤箱温度和计时器。如果温度飙升,您要在这批饼干被毁之前修复它。 为了使其发挥作用,我们需要依赖严格的质量数据。 我们从直接的产品测量和仪器读数中收集这些数据。通过统计分析这些数据,我们确保过程表现一致,从而免去生产后修正的头痛。 SPC 的历史 了解这些东西的真正来源有助于真正理解其背后的”原因”。 故事始于 20 世纪 20 年代初,贝尔实验室的一位名叫 Walter A. Shewhart 的物理学家。 他正试图解决一个棘手的问题:区分电话设备制造中的随机噪声和实际问题。… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/spc/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

相控阵超声检测(PAUT)是如何工作的?

相控阵超声检测(PAUT)是一种先进的无损检测方法。它让您可以使用一组小型超声探头检测材料中的缺陷,而无需损坏部件。与传统的单探头测试不同,您无需移动探头。 探头保持固定,您通过电子方式引导声束,实现精确的电子束聚焦。 如果您需要快速检查复杂几何形状或大表面,PAUT提供的扫描比传统方法更快且显示更多细节。 在本文中,我将解释相控阵超声检测的工作原理。 我们将介绍核心原理,如控制声束的聚焦法则和延迟法则,以及包括扇形扫描束控在内的技术。 您还将了解主要硬件组件及其最常见的应用。 如果您想先复习基础知识,请查看我们关于什么是超声检测以及它如何工作的指南。 它为理解超声检测的一般工作原理提供了良好的基础。 什么是相控阵超声检测? 相控阵超声检测(PAUT)是一种检测方法,它依赖于装有许多小型超声元件的探头。 在较旧的技术中,您必须在表面上物理滑动单个探头。 PAUT则不同。 它让您可以以电子方式引导超声束,为您提供精确控制,而无需移动探头本身。 其名称揭示了它的工作原理。 “阵列”是指元件的集合,“相控”是指用于脉冲每个元件的特定计算机控制时序。 通过调整时序,您可以准确地塑造和引导声束到您需要的位置。这个过程使用波物理学的基本原理,其中声波相互干涉以聚焦能量。 历史发展 这项技术实际上起源于医疗领域,医生在20世纪将其用于超声成像。 工业无损检测采用它花了一段时间,因为早期系统对大多数团队来说过于复杂和昂贵。 一旦计算机变得更强大,制造成本下降,PAUT就成为一种出色的检测工具。 现在,您会发现它被用于许多要求严格的行业,如建筑、管道和发电,以验证材料质量。 但并非随处可见,因为与替代方案相比,它仍然是一种相对昂贵的控制工具。 关键组件 任何PAUT系统的核心是探头。 该组件容纳所有将电信号转换为超声波的压电晶体元件。 这些元件彼此分离,以防止它们在探头内部相互干扰。 探头有几种配置:线性阵列、矩阵阵列或环形阵列。 对于大多数工业应用,例如相控阵焊缝检测,您可能会使用包含16到32个元件的线性阵列。 该探头通过专用电缆连接到主机,但您也可以找到无线选项。 电子束聚焦如何工作 在相控阵技术中,您可以引导和塑造超声束,完全无需移动探头。 这是PAUT相对于传统方法的最大区别,它让您更快、更彻底地检查部件。 但您需要精确的时序和基本的波物理学来将声波发送到您想要的位置。 聚焦法则和延迟机制 您使用聚焦法则管理束聚焦。 这些是简单的指令,告诉每个阵列元件何时发射脉冲。… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/paut/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon