Plastiform:粗糙度的接触式测量方法

使用 Plastiform P80Ra 和粗糙度仪进行间接粗糙度测量 ornemental strips ornemental strips

Last updated:

Plastiform P80 Ra,顾名思义,是一款能够精确复制并再现表面 Ra 粗糙度的产品。这一特性让它在测量仪器无法直接接触待测表面时大显身手。

使用 Plastiform 测量粗糙度

定义

所谓粗糙度,指的是由于高低不平而存在于物体表面的微小不规则形态。

算术平均粗糙度,记为 Ra,是指在取样长度内,轮廓偏距绝对值的算术平均值。换言之,它是在给定测量距离上,轮廓波峰与波谷之间的平均差值。

使用接触式粗糙度仪可在 P80 Ra 复制品上获得此 Ra 值。而其他特性(Rt、Rz 等)则只能通过非接触式表面测量系统获得。

复制品分辨率

分辨率是指测量系统能够在复制品上分辨或识别的最小细节。

通过亚纳米级分辨率的光学系统(如激光干涉仪和扫描仪)进行测试,结果表明 Plastiform 复制品的分辨率可达约 1 纳米。这证明了 Plastiform 产品(如此处的 P80 Ra)能够在应用表面上再现纳米级的精微细节。

P80 Ra 干涉测量法
使用 P80 Ra 样板测试 CETIM 激光干涉仪

总而言之,我们建议使用光学测量系统来检测 Plastiform 复制品;然而,只要遵循正确的操作步骤,接触式测量同样能获得极高的精度。

测量系统与结果

接触式粗糙度仪主要分为两大类:带滑块式和无滑块式。虽然两者皆可用于测量 P80 Ra 复制品,但通常使用无滑块式粗糙度仪能获得更优结果。这类仪器能够达到 +/- 0.1 µm 级别的测量公差。

若要追求最高精度,光学测量系统(非接触式)无疑是理想之选。它们能以极高的精确度测量低于 0.020 µm 的 Ra 粗糙度值。

接触式测量方法

本操作流程是基于我们众多客户的应用案例总结而成,是使用接触式测量设备获取最佳结果的推荐方法。

1. 彻底清洁待测表面

在制作复制品之前,务必使用 DN1 脱脂剂 彻底清洁工件,以免粗糙度检测结果失真。待测表面必须洁净,无任何油污残留。灰尘同样会影响复制品的质量。

2. 按说明操作,制取印模

要精确测量工件的粗糙度,必须严格按照要求在待测表面上施用 Plastiform。请参照使用说明,以确保高质量的取模效果。

P80 是一款不会流动的膏状产品,因此可适用于任何类型的表面。

注意:务必避免产生气泡!

我们建议使用平整物体将 Plastiform 压实在待测表面上,这样既能在其背部形成一个平面,又能确保产品充分渗入表面的微观结构中。

如此一来,您将获得一个固化后易于放置在触针下方的复制品。

3. 固化后静置30分钟

P80 固化之后,请静置约 30 分钟再开始测量粗糙度。这能让产品达到其最终硬度——邵氏 A 80。

此硬度对于保证测量精度至关重要。

4. 务必校准测量系统

在测量 P80 Ra 复制品之前,务必对您的测量系统进行正确校准。

Ra 表面粗糙度检测
使用标准件复模验证测量设备校准。

我们甚至建议,先在粗糙度样板的复制品上测试您的粗糙度仪,以验证其准确性。具体操作为:先制作一个粗糙度样板的复制品,然后比较直接测量样板和测量其复制品所得出的结果。

5. 正确放置印模

放置复制品时,应使其沟槽方向与测量方向垂直,并确保其放置稳固且尽可能平整。

我们建议在制作时,就在复制品背面创建一个“平坦基面”(参见上文第 2 点)。同时,复制品也必须被牢牢固定,以防测量时因触针的摩擦而移动。

切勿用手指扶持复制品,这会引起影响结果的微小抖动!

6. 进行测量

根据标准,必须在 5 个不同的截面上测量轮廓,以获取平均值。

此外,由于触针可能会对复制品表面造成轻微损伤,切勿在同一位置重复测量。

影响测量结果的因素

测量表面粗糙度时,有若干因素会影响结果。而当测量对象是复制品时,需要考虑的因素就更多了。以下是一个不完全的清单。

1. 环境

温度变化会影响粗糙度测量的结果,空气湿度同样如此。

2. 人为因素与测量策略

测量技术人员的经验同样会影响测量结果。选择正确的测量方法或合适的探头,是获取理想结果的关键。

3. 测量设备

测量设备的选择是否得当,直接决定了检测过程的难易程度。

有些仪器与 Plastiform 复制品完全兼容,而另一些则可能兼容性稍差。因此,我们始终建议进行预先测试,以验证设备的兼容性。

4. 测量对象

无论是原始工件表面还是复制品表面,都必须保持绝对洁净。同时,Plastiform 复制品必须达到其最终硬度(通常在施用后 30 到 40 分钟)。

此外,务必妥善保护复制品的待测表面。由于其材质并非金属,应避免刮擦、摩擦或过度挤压。拿取和放置时必须小心谨慎。

5. Ra 极限值

当表面的 Ra 粗糙度小于 0.4 µm 时,接触式测量方法便不再适用。

这是因为粗糙度过低,会导致粗糙度仪的读数产生偏差甚至错误。

因此,当待测粗糙度小于或等于 0.4 µm 时,应改用光学测量仪器(非接触式)进行测量。

相关文章

F30 Visual 用于表面缺陷的目视检查

目视检测 – 是什么?如何实施?

目视检测 (VT)(亦称视觉检测)是指利用肉眼,并通常辅以光学仪器对材料表面和工件进行检查,以此在不损坏组件的情况下识别不连续性。 它是当今机械工程领域中最基础的无损检测方法。 我过去常把目视检测当作事后才考虑的工作。对我来说,“检测”意味着使用卡尺或粗糙度测试仪之类的仪器。我曾认为仅凭肉眼观察零件过于主观,没什么用处。 目视检测是质量控制的第一道防线。 如果执行得当,它可以检测出绝大多数表面缺陷迹象,包括点蚀、腐蚀、接头错位以及异物污染。 在石油和天然气、航空航天以及结构工程等严苛领域,正确执行的目视检测通常是识别缺陷最经济高效的方式。 因为如果问题一眼就能看出来,就不必再做一整套测试,对吧? 在这篇文章中,我将分享如何确切地实施一套结构化的目视检测程序。 我们将涵盖直接观察和远程观察的基础知识、所需的设备(从简单的镜子到数字显微镜),以及满足国际标准所需的程序。我们还将讨论如何记录您的发现,使其具备可追溯性并符合审核要求。 让我们近距离了解一下这种出色的检测策略! 什么是目视检测? 目视检测 (VT) 是一种无损检测方法,通过直接观察或借助光学仪器检查材料表面和组件,以此在不损伤零件的情况下探测表面不连续性、裂纹、腐蚀和缺陷。它是制造业、航空航天及油气行业质量控制和无损检测项目中的主要筛查手段。 在质量保证领域,我们将 VT 归类为无损检测方法 (NDT),因为该过程不会改变、施压或损坏被检查的零件。 它被认为是检测项目中的第一道防线。 在动用复杂的射线或超声波设备之前,您只需观察零件即可发现明显的问题。 虽然听起来很简单,但目视检测是一个严谨的过程,能够检测出广泛的瑕疵。 专业的检测员可以识别出表面不连续性(如裂纹或气孔)、尺寸偏差以及结构异常。 它也是在生产后期引发问题之前,捕捉涂层缺陷和装配错误的主要方法。 直接目视检测 直接目视检测发生在检测员可以将眼睛置于测试表面的特定距离内时。 大多数标准,如 ASME 第 V 卷,要求眼睛距离表面在 24 英寸 (600 mm) 以内,且观察角度不小于 30 度。这确保您足够接近,能真实看到缺陷而非远距离猜测。 为了有效执行此操作,您需要充足的照明。 行业标准通常要求最小光照强度为 1000 勒克斯(大致相当于光线充足的办公室或专业的检测室)。 虽然“裸眼”是主要工具,但检测员经常使用放大镜… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/mu-shi-jian-ce-shi-shen-me-ru-he-shi-shi/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

统计过程控制 (SPC) – 定义与意义

统计过程控制 (SPC) 是一种利用统计技术来监控和控制制造过程的方法。 我过去常常认为,如果将机器设置得极其完美,它应该能无限期地生产出完美的零件。如果尺寸出现偏差,我会立即微调设置来修复它。但事实证明,这对任何人都毫无帮助。 根据每一次测量结果不断微调机器,通常只会放大问题。 我意识到每一个过程,无论多么精确,都有其心跳(一种自然的变异节奏)。为了在不抓狂的情况下管理这一点,我们需要统计过程控制 (SPC)。 它的目的是告诉你什么时候真正偏离了航向,什么时候只是遇到了路上的一个小颠簸。 目标直截了当:效率。 通过使用 SPC,您可以确保您的过程发挥其最大潜力,生产出更多符合规格的产品,并显著减少浪费。 您不再依赖昂贵的终端检测,而是开始在错误发生之前进行预防。 您可能会听到这个术语与统计质量控制 (SQC) 互换使用,或者看到它在关于质量控制的更广泛指南中被提及。 虽然它们同根同源,但 SPC 主要关注输入和活动过程,而不仅仅是最终输出。 在这篇文章中,我想帮助您建立一个关于 SPC 的坚实思维模型。我们将涵盖: 我保证,这比看起来要容易。 什么是统计过程控制? 大多数人认为质量保证就像期末考试。您制造产品,然后在生产线的最后进行检查。 如果不合格,就报废。 但坦率地说,这种做生意的方式极其昂贵。当您发现缺陷时,时间和材料已经浪费了。 统计过程控制 (SPC) 彻底颠覆了这种模式。 我们不再等待成品,而是使用统计方法来实时监控生产过程。目标是从检测(发现坏零件)转变为预防(从一开始就阻止其产生)。 这很像烤饼干。 传统的检查是在饼干出炉后尝一尝看是否烤焦了。SPC 是在烘烤时监控烤箱温度和计时器。如果温度飙升,您要在这批饼干被毁之前修复它。 为了使其发挥作用,我们需要依赖严格的质量数据。 我们从直接的产品测量和仪器读数中收集这些数据。通过统计分析这些数据,我们确保过程表现一致,从而免去生产后修正的头痛。 SPC 的历史 了解这些东西的真正来源有助于真正理解其背后的”原因”。 故事始于 20 世纪 20 年代初,贝尔实验室的一位名叫 Walter A. Shewhart 的物理学家。 他正试图解决一个棘手的问题:区分电话设备制造中的随机噪声和实际问题。… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/spc/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

相控阵超声检测(PAUT)是如何工作的?

相控阵超声检测(PAUT)是一种先进的无损检测方法。它让您可以使用一组小型超声探头检测材料中的缺陷,而无需损坏部件。与传统的单探头测试不同,您无需移动探头。 探头保持固定,您通过电子方式引导声束,实现精确的电子束聚焦。 如果您需要快速检查复杂几何形状或大表面,PAUT提供的扫描比传统方法更快且显示更多细节。 在本文中,我将解释相控阵超声检测的工作原理。 我们将介绍核心原理,如控制声束的聚焦法则和延迟法则,以及包括扇形扫描束控在内的技术。 您还将了解主要硬件组件及其最常见的应用。 如果您想先复习基础知识,请查看我们关于什么是超声检测以及它如何工作的指南。 它为理解超声检测的一般工作原理提供了良好的基础。 什么是相控阵超声检测? 相控阵超声检测(PAUT)是一种检测方法,它依赖于装有许多小型超声元件的探头。 在较旧的技术中,您必须在表面上物理滑动单个探头。 PAUT则不同。 它让您可以以电子方式引导超声束,为您提供精确控制,而无需移动探头本身。 其名称揭示了它的工作原理。 “阵列”是指元件的集合,“相控”是指用于脉冲每个元件的特定计算机控制时序。 通过调整时序,您可以准确地塑造和引导声束到您需要的位置。这个过程使用波物理学的基本原理,其中声波相互干涉以聚焦能量。 历史发展 这项技术实际上起源于医疗领域,医生在20世纪将其用于超声成像。 工业无损检测采用它花了一段时间,因为早期系统对大多数团队来说过于复杂和昂贵。 一旦计算机变得更强大,制造成本下降,PAUT就成为一种出色的检测工具。 现在,您会发现它被用于许多要求严格的行业,如建筑、管道和发电,以验证材料质量。 但并非随处可见,因为与替代方案相比,它仍然是一种相对昂贵的控制工具。 关键组件 任何PAUT系统的核心是探头。 该组件容纳所有将电信号转换为超声波的压电晶体元件。 这些元件彼此分离,以防止它们在探头内部相互干扰。 探头有几种配置:线性阵列、矩阵阵列或环形阵列。 对于大多数工业应用,例如相控阵焊缝检测,您可能会使用包含16到32个元件的线性阵列。 该探头通过专用电缆连接到主机,但您也可以找到无线选项。 电子束聚焦如何工作 在相控阵技术中,您可以引导和塑造超声束,完全无需移动探头。 这是PAUT相对于传统方法的最大区别,它让您更快、更彻底地检查部件。 但您需要精确的时序和基本的波物理学来将声波发送到您想要的位置。 聚焦法则和延迟机制 您使用聚焦法则管理束聚焦。 这些是简单的指令,告诉每个阵列元件何时发射脉冲。… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/paut/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon