解读可追溯性:如何通过取模技术实现精准追踪

一叠文件夹 ornemental strips ornemental strips

Last updated:

可追溯性”并非新生事物,其概念雏形早在3800多年前的古代便已出现。

在那个遥远的时代,人们习惯于使用印章或烙铁来认证交易。

时至今日,可追溯性的概念在工业领域已无处不在,它为我们揭示了一件产品生命周期中的所有必要信息。

从原材料采购到产品分销,乃至产品售出后的使用损耗,这些信息在生产链的每一个环节都得到了精确追踪。

各行各业都已采纳这一理念,以确保生产过程尽在掌控。国际标准ISO-9001对可追溯性做出了明确的定义。

可追溯性:简单易懂的定义

定义

让我们先来梳理一下基本概念!

所谓可追溯性,即具备在整个生产链中追踪产品的能力。

一旦建立了这套系统化的追踪体系,您便能清晰掌握产品是在何时、何地、由谁、以何种方式制造出来的。

这种严谨的管理方法,将助您显著提升产品的质量与安全性。

是的,其重要性不言而喻……

为了实现更高效的追溯,我们通常从以下两个维度着手:

  • 供应链可追溯性:监控产品在不同制造商(或分包商)之间的流转过程。
  • 内部可追溯性:专注于监控产品在某一特定流程内部的演变情况。

供应链与可追溯性

如前所述,这里的目标是追踪产品从一家制造商到另一家制造商,从原材料到生命周期终点(无论是回收还是废弃)的全过程。

我们的目标是为产品建立一部完整的“履历”,记录下所有操作历史以及相关的性能指标(如尺寸、表面状况、重量等)。

实施这套流程能带来诸多优势:

  • 制造商能够获取必要信息,从而高效处理产品召回、精准识别生产缺陷。
  • 消费者能够获得完整的产品信息(如产地、成分等)。
  • 制造商可以要求分包商验证其代工生产的零部件是否符合规定。

当然,这套流程的实施要求颇高——您需要制定详尽的规程,并充分考虑到其执行所需的时间成本。

内部可追溯性

现在,我们转换视角。参考基准不再是整个供应链,而是其中一个更具体的单元:公司本身。

在这种情况下,我们仅聚焦于公司内部的流程,即从上游环节接收物料到下游环节交付产品的整个过程。

在这一类别下,我们又可以细分出几种更具体的内部可追溯性:

  • 流程可追溯性:在制造过程中收集和处理信息。这些信息会与产品的唯一标识符绑定,使得信息检索易如反掌。
  • 部件控制可追溯性:对零部件的磨损情况进行监控。这既包括周期性磨损,也涵盖了规格符合性的检验,例如,加工后的尺寸是否达标。

关键在于,所有的追踪记录都必须与其参考对象(产品、流程等)相关联。如此一来,您便可以轻松识别瑕疵和故障,并迅速做出响应。

可追溯性的重要性

现代工业的生产流程极其复杂。

例如,企业可能将一部分生产外包到亚洲,同时又让其拉丁美洲的子公司生产另一部分组件。

待所有零部件集齐后,最终运回法国进行组装。

如此复杂的供应链,无疑给企业确保产品质量带来了巨大挑战。

此外,当客户报告产品故障时,制造商必须有能力追根溯源,以判定:

  • 故障是偶然的个例,还是系统性问题。
  • 问题的根源来自哪个流程或设备。

因此,在产品质量控制中,尤其是在风险识别与预防方面,可追溯性扮演着至关重要的角色。

如果您能随时掌握产品或组件的状态,就能更快地定位问题根源。更进一步,如果故障波及整个生产批次,企业必须有能力实施快速召回(例如,在飞机发动机出现故障的紧急情况下)。

通过取模技术实现可追溯性

那么,Plastiform复制胶泥是如何在可追溯性方面大显身手的呢?

答案是肯定的!

Plastiform产品能够确保以下几项关键要素的可追溯性:

  • 组件或部件尺寸
  • 表面粗糙度状况
  • 目视缺陷检查

取模件精准捕捉了零部件在聚合固化瞬间的状态。

根据不同的产品和应用场景,您可以将这份承载着零部件受检时状态的物理证据妥善保存,它对于后续分析而言价值连城。

那么,应该如何保存我的Plastiform取模件呢?

关键的第一点:取模件必须存放在密封袋中,避免与任何物体接触或受到挤压。

Plastiform产品具有形状记忆特性,这意味着它们能够长久地保持其原始形态。

但是……

如果取模件在保管或转移过程中处理不当,仍有损坏的风险。

所以,请务必妥善保护您的取模件!

此外,请务必使用非接触式测量仪器!

例如,粗糙度仪的测针在同一个取模件上反复划过,就可能会造成刮伤……

这显然不是我们想要的结果!

案例分析:表面视觉检测

表面缺陷的视觉检测这一特定应用中,Plastiform复制胶泥具有显著优势。

如下图所示,与直接观察原始表面相比,使用Plastiform取模件可以更精确地检测表面缺陷。

锦上添花的是,您还能在取模件上永久保留这个缺陷的影像。

非常方便,不是吗?

F30 Visual之所以能呈现如此出色的效果,完全得益于其独特的黑色和色彩属性。

别怀疑它的精度——它甚至能复制文件上的印刷油墨!

F30 Visual 复制印模
Aluminium Surface
复制胶泥
ORIGINAL SURFACE
左侧为原始工件,右侧为F30 Visual制作的表面复制品

这项功能非常实用,并且取模件本身也确保了缺陷的可追溯性。

有人可能会问,何必多此一举——如果零部件有缺陷,为什么不直接把它寄出进行分析呢?

嗯,这要视具体情况而定。如果缺陷存在于一个难以移动或拆卸的零部件上,那么寄送一份F30 Visual 取模件显然是更明智的选择!

您需要自行评估最合适的方法,但请放心,Plastiform总能为您排忧解难!

结论

可追溯性是质量控制体系中的关键一环。对产品和流程进行追踪至关重要,它能确保企业在发生故障时迅速而有效地做出反应。

国际质量管理标准被统一归入ISO 9000系列。其中,ISO 9001标准在“测量可追溯性”以及“标识和可追溯性”两个章节中,对可追溯性的概念进行了详细阐述。

最后,Plastiform取模件通过保存取模瞬间的零部件状态,可以有效地辅助整个可追溯性管理工作。

相关文章

F30 Visual 用于表面缺陷的目视检查

目视检测 – 是什么?如何实施?

目视检测 (VT)(亦称视觉检测)是指利用肉眼,并通常辅以光学仪器对材料表面和工件进行检查,以此在不损坏组件的情况下识别不连续性。 它是当今机械工程领域中最基础的无损检测方法。 我过去常把目视检测当作事后才考虑的工作。对我来说,“检测”意味着使用卡尺或粗糙度测试仪之类的仪器。我曾认为仅凭肉眼观察零件过于主观,没什么用处。 目视检测是质量控制的第一道防线。 如果执行得当,它可以检测出绝大多数表面缺陷迹象,包括点蚀、腐蚀、接头错位以及异物污染。 在石油和天然气、航空航天以及结构工程等严苛领域,正确执行的目视检测通常是识别缺陷最经济高效的方式。 因为如果问题一眼就能看出来,就不必再做一整套测试,对吧? 在这篇文章中,我将分享如何确切地实施一套结构化的目视检测程序。 我们将涵盖直接观察和远程观察的基础知识、所需的设备(从简单的镜子到数字显微镜),以及满足国际标准所需的程序。我们还将讨论如何记录您的发现,使其具备可追溯性并符合审核要求。 让我们近距离了解一下这种出色的检测策略! 什么是目视检测? 目视检测 (VT) 是一种无损检测方法,通过直接观察或借助光学仪器检查材料表面和组件,以此在不损伤零件的情况下探测表面不连续性、裂纹、腐蚀和缺陷。它是制造业、航空航天及油气行业质量控制和无损检测项目中的主要筛查手段。 在质量保证领域,我们将 VT 归类为无损检测方法 (NDT),因为该过程不会改变、施压或损坏被检查的零件。 它被认为是检测项目中的第一道防线。 在动用复杂的射线或超声波设备之前,您只需观察零件即可发现明显的问题。 虽然听起来很简单,但目视检测是一个严谨的过程,能够检测出广泛的瑕疵。 专业的检测员可以识别出表面不连续性(如裂纹或气孔)、尺寸偏差以及结构异常。 它也是在生产后期引发问题之前,捕捉涂层缺陷和装配错误的主要方法。 直接目视检测 直接目视检测发生在检测员可以将眼睛置于测试表面的特定距离内时。 大多数标准,如 ASME 第 V 卷,要求眼睛距离表面在 24 英寸 (600 mm) 以内,且观察角度不小于 30 度。这确保您足够接近,能真实看到缺陷而非远距离猜测。 为了有效执行此操作,您需要充足的照明。 行业标准通常要求最小光照强度为 1000 勒克斯(大致相当于光线充足的办公室或专业的检测室)。 虽然“裸眼”是主要工具,但检测员经常使用放大镜… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/mu-shi-jian-ce-shi-shen-me-ru-he-shi-shi/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

统计过程控制 (SPC) – 定义与意义

统计过程控制 (SPC) 是一种利用统计技术来监控和控制制造过程的方法。 我过去常常认为,如果将机器设置得极其完美,它应该能无限期地生产出完美的零件。如果尺寸出现偏差,我会立即微调设置来修复它。但事实证明,这对任何人都毫无帮助。 根据每一次测量结果不断微调机器,通常只会放大问题。 我意识到每一个过程,无论多么精确,都有其心跳(一种自然的变异节奏)。为了在不抓狂的情况下管理这一点,我们需要统计过程控制 (SPC)。 它的目的是告诉你什么时候真正偏离了航向,什么时候只是遇到了路上的一个小颠簸。 目标直截了当:效率。 通过使用 SPC,您可以确保您的过程发挥其最大潜力,生产出更多符合规格的产品,并显著减少浪费。 您不再依赖昂贵的终端检测,而是开始在错误发生之前进行预防。 您可能会听到这个术语与统计质量控制 (SQC) 互换使用,或者看到它在关于质量控制的更广泛指南中被提及。 虽然它们同根同源,但 SPC 主要关注输入和活动过程,而不仅仅是最终输出。 在这篇文章中,我想帮助您建立一个关于 SPC 的坚实思维模型。我们将涵盖: 我保证,这比看起来要容易。 什么是统计过程控制? 大多数人认为质量保证就像期末考试。您制造产品,然后在生产线的最后进行检查。 如果不合格,就报废。 但坦率地说,这种做生意的方式极其昂贵。当您发现缺陷时,时间和材料已经浪费了。 统计过程控制 (SPC) 彻底颠覆了这种模式。 我们不再等待成品,而是使用统计方法来实时监控生产过程。目标是从检测(发现坏零件)转变为预防(从一开始就阻止其产生)。 这很像烤饼干。 传统的检查是在饼干出炉后尝一尝看是否烤焦了。SPC 是在烘烤时监控烤箱温度和计时器。如果温度飙升,您要在这批饼干被毁之前修复它。 为了使其发挥作用,我们需要依赖严格的质量数据。 我们从直接的产品测量和仪器读数中收集这些数据。通过统计分析这些数据,我们确保过程表现一致,从而免去生产后修正的头痛。 SPC 的历史 了解这些东西的真正来源有助于真正理解其背后的”原因”。 故事始于 20 世纪 20 年代初,贝尔实验室的一位名叫 Walter A. Shewhart 的物理学家。 他正试图解决一个棘手的问题:区分电话设备制造中的随机噪声和实际问题。… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/spc/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

相控阵超声检测(PAUT)是如何工作的?

相控阵超声检测(PAUT)是一种先进的无损检测方法。它让您可以使用一组小型超声探头检测材料中的缺陷,而无需损坏部件。与传统的单探头测试不同,您无需移动探头。 探头保持固定,您通过电子方式引导声束,实现精确的电子束聚焦。 如果您需要快速检查复杂几何形状或大表面,PAUT提供的扫描比传统方法更快且显示更多细节。 在本文中,我将解释相控阵超声检测的工作原理。 我们将介绍核心原理,如控制声束的聚焦法则和延迟法则,以及包括扇形扫描束控在内的技术。 您还将了解主要硬件组件及其最常见的应用。 如果您想先复习基础知识,请查看我们关于什么是超声检测以及它如何工作的指南。 它为理解超声检测的一般工作原理提供了良好的基础。 什么是相控阵超声检测? 相控阵超声检测(PAUT)是一种检测方法,它依赖于装有许多小型超声元件的探头。 在较旧的技术中,您必须在表面上物理滑动单个探头。 PAUT则不同。 它让您可以以电子方式引导超声束,为您提供精确控制,而无需移动探头本身。 其名称揭示了它的工作原理。 “阵列”是指元件的集合,“相控”是指用于脉冲每个元件的特定计算机控制时序。 通过调整时序,您可以准确地塑造和引导声束到您需要的位置。这个过程使用波物理学的基本原理,其中声波相互干涉以聚焦能量。 历史发展 这项技术实际上起源于医疗领域,医生在20世纪将其用于超声成像。 工业无损检测采用它花了一段时间,因为早期系统对大多数团队来说过于复杂和昂贵。 一旦计算机变得更强大,制造成本下降,PAUT就成为一种出色的检测工具。 现在,您会发现它被用于许多要求严格的行业,如建筑、管道和发电,以验证材料质量。 但并非随处可见,因为与替代方案相比,它仍然是一种相对昂贵的控制工具。 关键组件 任何PAUT系统的核心是探头。 该组件容纳所有将电信号转换为超声波的压电晶体元件。 这些元件彼此分离,以防止它们在探头内部相互干扰。 探头有几种配置:线性阵列、矩阵阵列或环形阵列。 对于大多数工业应用,例如相控阵焊缝检测,您可能会使用包含16到32个元件的线性阵列。 该探头通过专用电缆连接到主机,但您也可以找到无线选项。 电子束聚焦如何工作 在相控阵技术中,您可以引导和塑造超声束,完全无需移动探头。 这是PAUT相对于传统方法的最大区别,它让您更快、更彻底地检查部件。 但您需要精确的时序和基本的波物理学来将声波发送到您想要的位置。 聚焦法则和延迟机制 您使用聚焦法则管理束聚焦。 这些是简单的指令,告诉每个阵列元件何时发射脉冲。… <a href="https://www.plastiform.info/zh/blog/zhiliangbaozheng/paut/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon