粗糙度计:精测表面状态的奥秘

粗糙度仪正在测量工件表面 ornemental strips ornemental strips

Last updated:

在机械加工中,无论设备何等精密,工件表面总会留下微小的瑕疵。这些瑕疵,即微观几何粗糙度,源于切削工具的固有不完美(毕竟,绝对的完美并不存在!)。

因此,精确测量这些瑕疵至关重要。八十多年来,表面光洁度测量技术不断精进,成为提升产品性能的关键一环。通过评定这些瑕疵的平均值,我们便能判断工件表面是否达到规格要求。

粗糙度测试仪,正是能够评定零件表面状态的专业仪器之一。

如今,依据 国际标准,表面光洁度由多个参数共同定义:在原始轮廓上计算的 P 参数,通过粗糙度轮廓测量的 R 参数,以及对应波纹度轮廓的 W 参数。

在本文中,我们将深入了解市面上几款能量测部分参数的粗糙度测试仪,并一同探讨其他值得关注的相关技术与仪器。

表面状态参数

为了描述表面状态,我们通常需要测量多种轮廓,而本文将重点关注其中两种:粗糙度轮廓与波纹度轮廓。这两种轮廓都能为我们揭示表面瑕疵的信息。

粗糙度

粗糙度主要关注微观几何瑕疵,通常使用粗糙度测试仪或轮廓仪进行测量。其相关参数均以字母 R 为前缀,如 Ra、Rz、Rw 等。

粗糙度参数反映的是由加工刀具产生的条纹、沟槽等瑕疵。

波纹度

波纹度可以看作是粗糙度的补充,它涵盖了表面轮廓中所有波长较长的组成部分。其相关参数以字母 W 开头。

市场上的粗糙度测试仪

粗糙度测试仪是一种接触式测量仪器,其测针通过在工件表面上移动,来采集与粗糙度相关的各项数据,在某些型号中,也能采集波纹度参数。

粗糙度测试仪通常轻便小巧、价格实惠,是检查产品表面时最易于普及和使用的设备之一。不过,市面上的粗糙度测试仪也分为不同类型。

带导块的粗糙度测试仪

这是一种入门级型号。其测针由一个导块作为基准进行引导,因此通常只适用于测量平面。

在 P80Ra 复制胶泥印模上进行 Ra 粗糙度测量
带导块的表面粗糙度仪

带导块的型号,其测针通常只能测量粗糙度参数。导块在引导测针的同时,可能会对某些特定表面的测量精度造成影响。但另一方面,导块的存在也让设备更加坚固、便于携带。

导块式粗糙度测试仪非常适合在车间环境中使用,尤其是在需要快速、便捷地定位设备的场景下。

无导块的粗糙度测试仪

而无导块的粗糙度测试仪则利用设备内置的精密导轨来控制测针。这种内部导轨结构使其能够应对更为复杂的表面测量。

由于内部导轨能让测针获得更精准的测量结果,无导块粗糙度测试仪通常更受青睐。

Accretech 无滑块粗糙度仪
Accretech 无滑块粗糙度测试仪

此外,它也是测量复制胶泥印模的理想之选。

粗糙度测试仪的替代方案

粗糙度测试仪属于接触式测量设备。如果您希望进行非接触式粗糙度测量,或者在某些工况下无法放置粗糙度测试仪,那么市面上还有其他替代方案可供选择。

轮廓仪

轮廓仪最初也是一种接触式测量仪器,通过金刚石尖端的测針来读取待测表面。当然,请不要误会,如今的市场上依然有接触式轮廓仪,并且它们非常实用且经济。然而,这类仪器也存在一些固有的缺点:

  • 测量速度较慢,测针扫描速度通常在 1 毫米/秒左右。
  • 可能会划伤待测表面,因此大多仅限于在较硬的金属表面上使用。
  • 对于非常脆弱或具有磨蚀性的表面,使用接触式轮廓仪进行测量可能会同时损坏测针和工件本身。

我们通常所说的粗糙度测试仪,其实就是一种便携式轮廓仪,因此两者的操作原理大同小异。

作为接触式粗糙度测量的替代方案,光学轮廓仪更值得我们关注。光学轮廓仪主要分为两类:矩阵式(面扫描)和扫描式(线扫描)。

F30 Visual 复制印模与轮廓仪
使用轮廓仪测量 F30 Visual 复制印模的表面粗糙度。

第一种是矩阵式光学轮廓仪,其工作原理是读取由 CCD 相机拍摄的图像。这种型号的优势无疑是其惊人的测量速度。它是目前市场上速度最快的轮廓仪,并且能提供极为精确的测量结果。

而扫描式光学轮廓仪的情况则要复杂一些,因为其机械扫描装置会产生微弱的噪声信号,并叠加到表面轮廓数据中。当然,这类轮廓仪的性能依然非常出色。实际上,即便是使用接触式粗糙度测试仪,由于测针与表面存在机械摩擦,同样也会引入测量噪声。

间接控制

在某些特定工况下,粗糙度测试仪可能无法触及待测表面,而工件本身也大到无法移动到轮廓仪上进行测量。面对这种两难的境地,能够胜任的测量仪器寥寥无几。

P80Ra 粗糙度检测步骤图解
使用复制胶泥,轻松解决粗糙度仪无法测量的难题。

此时,最具成本效益的解决方案便是制作复制印模:使用高分子材料精确复制表面形貌,然后将印模带到实验室,用粗糙度测试仪进行测量。

复制胶泥提供的 行业专用解决方案,测量精度可达微米级,而平均单次检测成本仅为 4 美元

我们的产品可与各类粗糙度测试仪和光学轮廓仪无缝兼容。(从更广义上讲,我们的产品兼容所有用于表面光洁度或尺寸控制的质量检测仪器。)

P80 Ra 是专门为配合粗糙度测试仪使用而开发的产品。如果您在使用此类设备进行测量时遇到困难,我们强烈建议您深入了解这款产品,它定能助您一臂之力!当与无导块粗糙度测试仪配合使用时,其测量精度甚至会更高!

F30 Visual 则更适用于非接触式测量设备,因其质地过于柔软,弹性较大,不适合在接触式粗糙度测试仪上使用。虽然它并非本文的讨论重点,但多了解一种解决方案总归是好的:记住,F30 Visual 是非接触式测量的理想搭档!

如何使用粗糙度测试仪?

简单回答:这取决于制造商!每台机器都有其特殊性,但原理大同小异:

  1. 务必使用专用标准件校准 粗糙度测试仪(通常随设备提供)。未经校准的设备,其测量值是无效的!
  2. 设备校准完毕后,将其放置在待检表面上,然后启动测量。您会看到测针开始移动,请耐心等待其完成整个扫描过程,直至完全停止。
  3. 此时,查看设备屏幕,即可读取测量数据。

部分型号的设备支持数据导出,便于数字化存档。详情请参阅您的设备说明书!

如何使用复制胶泥配合测量?

使用复制胶泥进行测量,其步骤与直接测量原始表面几乎完全一样,唯一的区别就在于需要先制作印模!

关于如何应用复制胶泥产品以及如何提取印模,我们已为您准备了大量的参考资料。如果您对我们的技术还不熟悉,欢迎随时查阅!

当用于尺寸控制时,制作印模的流程有一个小小的特别之处。

由于后续需要使用粗糙度测试仪进行测量,我们需要为印模创造一个稳定的基准面。方法很简单:在制作印模时,压平其背离待测表面的那一侧即可。

在施用材料时,只需用一个平整的物体将胶泥压平即可(请务必在材料固化前完成,否则就太晚了!)。使用 P80 Ra,您大约有 6 分钟的充裕时间来完成此操作!

待材料完全固化后,您便可以将印模平稳地放置在压平的基面上,然后使用您的粗糙度测试仪(无论带导块还是无导块的型号!)进行测量。

结论

粗糙度测试仪是一种用于测量表面光洁度、验证零件合规性的设备。使用带导块的型号,您可以获取表面的粗糙度轮廓;而使用无导块的型号,您还可以进一步获取其波纹度轮廓。

总而言之,粗糙度测试仪是一种 高效、可靠且经济实惠的仪器, 并且与复制胶泥产品堪称天作之合!

如果您希望能对零件进行系统化的品质检测,那么便携式粗糙度测试仪与 P80 Ra(用于检测难以触及的区域)的组合,无疑是您的制胜法宝

相关文章

过程稳定性——是什么以及为何重要

过程稳定性是指一个过程在确定的限制范围内能够持续、可预测地运行的能力。这就像是一个像可靠时钟一样运行的过程与一个像轮盘赌一样运行的过程之间的区别。 您是否体会过那种下沉的感觉:周五还完美运行的机器,到了周一早上却制造出了一堆废品? 这绝对是最糟糕的情况。 您没有更改设置,原材料看起来也是一样的,但结果突然变得乱七八糟。 在质量保证领域,这就是一个稳定性问题。 以前我也误解了一件事:我以为解决质量问题就是立即收紧公差或升级设备。 但事实证明,稳定性是其他一切乏味但必要的基础。 如果您的过程不稳定(由于“特殊原因”变异产生不可预测的结果),试图提高其能力就像试图在沼泽上盖房子。在盖房子之前,您需要坚实的地基。 在本文中,我们将分解通常令人困惑的概念,如普通原因变异与特殊原因变异,并向您展示它们如何决定您的质量策略。我们还将了解 统计过程控制(SPC) 中使用的工具如何帮助您可视化这种稳定性(或缺乏稳定性)。 让我们看看它是如何工作的。 什么是过程稳定性? 当我们谈论过程稳定性时,您会发现我们谈论的不一定是产品的质量。这听起来可能有点反直觉,但稳定性实际上关乎可预测性。 把您的过程想象成汽车引擎的怠速。即使它运行完美,转速指针也不是完全静止不动的。 它会轻微上下摆动。这种摆动是自然的。 在计量学中,我们将此称为普通原因变异。当一个过程仅显示这些自然的、固有的波动,并且严格在定义的控制限内运行时,该过程被认为是稳定的。 如果过程操作随时间推移产生一致的输出,您就实现了稳定性。但这有一个棘手的区别,很多人都会在这里绊倒。 当特殊原因变异介入时,过程通常就不再稳定了。 这些是外部干扰(如工具断裂或原材料突然变化),迫使过程脱离其自然节奏。一旦发生这种情况,一切都乱套了,您再也无法预测输出。 普通原因变异 在质量保证中,我们常常痴迷于一致性。 但物理上不可能做到完美。 没有两个零件是完全相同的,因为重力、摩擦和物理规律总是会造成影响。我们将这种固有的、背景水平的不一致性称为普通原因变异。 我喜欢把这想象成您每天上班的通勤。即使您每天早上在完全相同的时间出发,您的到达时间也会相差几分钟。也许您会遇到红灯,也可能不会。 您不会因为这种差异而惊慌。它是随机的、预期的,只是“交通驾驶”系统的一部分。 在您的生产线上,这些变异来自于数十个微小的、不可避免的因素的综合影响。 它与所有事物相互作用,包括原材料的微小差异、刀尖的正常磨损、操作员的轻微变动,甚至是车间温度的小幅变化。 您无法通过调节旋钮或向操作员大喊大叫来消除普通原因变异。 由于这些波动已融入系统设计中,减少它们的唯一方法是彻底重新设计过程本身。 通常您必须升级机器或更换材料才能看到改变。 特殊原因变异 如果说普通原因变异像是过程的背景嗡嗡声,那么特殊原因变异(常被称为可归属原因)就是一声巨响。 它代表了将过程行为完全推离轨道的意外中断。 回到“日常通勤”的心智模型。 如果您开车上班通常需要 25 到 35 分钟(取决于红绿灯),这就是普通原因变异。但如果有一天因为爆胎花了 90 分钟,那就是特殊原因变异。 这不仅是“交通更拥堵一点”。这是一个改变了系统的特定的、可识别的事件。 在制造环境中,这些“爆胎”通常来自我们可以查明的来源: 当特殊原因袭来时,您的过程变得不可预测。… <a href="https://www.plastiform.info/zh/blog/jiliangxue/%E8%BF%87%E7%A8%8B%E7%A8%B3%E5%AE%9A%E6%80%A7-%E6%98%AF%E4%BB%80%E4%B9%88%E4%BB%A5%E5%8F%8A%E4%B8%BA%E4%BD%95%E9%87%8D%E8%A6%81/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

如何进行量具 R&R 研究?

量具 R&R 研究(量具重复性与再现性分析)测量量具的总变异,并将其作为过程公差的百分比,从而帮助确定测量工具是否适合检测零件。这是测量系统评估和计量器具校验的核心方法。 我记得第一次拒收一批完全合格的零件的情景。我的数显卡尺显示它们超出了规格,但我的同事在五分钟后测量时,却发现它们完全在公差范围内。 这令人困惑。 我以为是工具坏了或者零件翘曲了,但我找错了方向。 事实证明,每次测量时,你不只是在捕捉零件的真实情况。你捕捉的是零件的实际尺寸加上工具引入的噪音(重复性)和持握工具的人引入的噪音(再现性)的组合。 这就是 量具 R&R(测量系统评估) 派上用场的地方。它就像是为数据降噪——过滤掉干扰信号,保留真实信息。 这是一种方法论,它能准确告诉你观察到的过程变异中有多少来自测量系统分析 (MSA) 本身,又有多少来自实际的零件变异。如果这把”尺子”是橡胶做的,无论数字看起来多精确,你都无法信任测量结果。 你会经常使用这个工具。它是验证闪亮的新设备、比较两种不同设备或在维修后验证三坐标测量机(CMM)的标准方法。如果你刚开始接触 QA 概念,可能需要先阅读有关质量控制的内容。 在本文中,我将分享如何设置并进行量具 R&R 研究,以便你开始信任你的数据。 让我们来看看吧! 什么是量具 R&R 研究? 我们通常认为数显卡尺和千分尺告诉我们的是真相。 但现实是:每一个测量系统都会给数据增加一层自身的噪音。量具 R&R 研究就是我们要用来测量这种噪音的工具。 量具 R&R(GR&R)中的两个 R 分别代表 重复性(Repeatability,测量设备变差) 和 再现性(Reproducibility,操作员变差),它是一种量化测量系统能力的定量方法。 它隔离了纯粹由测量过程(工具加上使用它的人)引起的变异,并将其与生产中看到的总变异进行比较。 就像听收音机一样。 音乐是你想捕捉的真实信号(零件变异)。静电嘶嘶声是测量误差。如果杂音太大,你就无法分辨歌曲。 量具 R&R 测量这种杂音的音量,以确定这台收音机是否值得保留。 这项研究是更大框架的核心支柱:测量系统分析(MSA,Measurement System Analysis)。这也是六西格玛管理、质量管理体系认证(如 ISO/TS 16949)和精益生产中的关键工具。当你运行它时,你会得到三个黑盒问题的答案:… <a href="https://www.plastiform.info/zh/blog/jiliangxue/ru-he-jin-xing-liang-ju-r-r-yan-jiu/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

涡流检测 – 操作指南

涡流是导电材料中因响应磁通量变化而自然产生的圆形电流,它们会产生反向磁场。 这项技术依赖于电磁感应原理。 这与无线充电电动牙刷或 iPhone 的物理原理相同,但被重新利用于极其精确地搜寻结构缺陷。 这种方法广泛应用于现代无损检测 (NDT)。 概念很复杂。我们使用线圈在导电材料中感应出微小的圆形电流。 如果这些电流流动顺畅,说明部件完好。但如果它们遇到裂纹或空隙等障碍,流动就会改变,仪器会立即发出警报。 为什么这很重要? 在航空航天和石油天然气管道等高风险行业中,肉眼看不见的缺陷可能会产生灾难性的后果。 我们需要一种在不改变部件的情况下”看到”这些缺陷的方法。涡流检测为我们提供了这种可视性,实现了其他方法无法比拟的快速表面裂纹检测和材料分选能力。 在本文中,我想帮助您建立一个关于其实际工作原理的坚实思维模型。 我们将深入探究其物理原理,探索设备,并确切了解为什么这种方法在验证质量方面如此有效。我们将研究从磁场行为到现场使用的特定探头类型的所有内容。 让我们开始吧。 什么是涡流? 当我们谈论无损检测时,我们常常使用这些神奇的工具,却不深究其背后的物理原理。你在部件上挥动探头,突然就知道下面是否隐藏着微小的裂纹。 但是金属内部实际上发生了什么?归根结底就是涡流。 这个名字给了我们关于其工作原理的巨大线索。想象一条向下游流动的河流。如果你把桨伸进水里,水流会绕过障碍物形成圆形的漩涡。 在流体动力学中,这些旋涡被称为”涡流”。 在我们的计量世界中,”河流”是导电材料(如铝或铜),而”桨”是变化的磁场。 当磁场撞击导体时,它会将电子推入闭合的圆形电流回路。 这些就是你的涡流。 然而,这些电流不仅仅是空转。它们会产生自己的磁场。 这个新磁场与产生它的原始磁场相对抗。这种行为被称为楞次定律。 正是这两个磁场之间的”推拉”作用使我们能够检测缺陷。 如果裂纹破坏了电流流动,反作用力就会改变,我们的仪器就能检测到这种差异。 要实现这一点,你需要两个要素。首先,材料必须导电。 其次,磁场必须随时间变化,这就是为什么我们通常在检测探头中使用交流电。 电磁感应原理 如果您曾经拿着探头对准金属部件并看着屏幕上的信号跳动,这感觉有点像魔术。 你没有接触表面,但你知道里面确切发生了什么。 这就是电磁感应原理在起作用。这是驱动整个检测过程的物理引擎。 当你将变化的磁场(如探头中的磁场)靠近导体时,那些看不见的磁力线会”切割”过材料。 这种变化产生了电动势,即 EMF。 把 EMF 想象成一种电压力,而不是固体物体。它推动金属中的自由电子,强制它们移动。 这种推动力的大小在很大程度上取决于导体的电阻率和磁导率。 如果材料导电性高,电子就容易流动。如果有电阻,它们就会受阻,产生热量而不是强电流。 洛伦兹力 让我们把镜头拉近到原子层面。 实际上控制这些电子的力被称为洛伦兹力。 当探头的磁场扫过材料时,它会物理地推动载流子(电子)。 由于… <a href="https://www.plastiform.info/zh/blog/jiliangxue/guo-liu-jian-ce-cao-zuo-zhi-nan/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon