遮蔽胶带并非万能:如何找到完美的替代方案?

多卷遮蔽胶带 ornemental strips ornemental strips

提到表面处理中的遮蔽工序,我们首先想到的或许就是成卷的遮蔽胶带。其目的是保护零件的特定区域免受处理过程的影响。然而,这项操作通常漫长而乏味,不仅耗费大量人力,也离不开粘合剂的使用。

遮蔽胶带是工业领域最常见的遮蔽工具,但它远非理想之选。

实际上,胶带不仅需要手动粘贴,而且是一次性消耗品,无法重复使用。尽管如此,许多人似乎并未意识到还有其他选择。那么,我们究竟该如何替代它呢?

什么是遮蔽?

如果您会点开这篇文章,想必对“遮蔽”并不陌生。不过,为了确保我们对接下来的内容有共同的理解,我们还是快速回顾一下它的核心目标。

当我们需要对一个零件进行处理时(例如喷漆、喷砂或化学处理),往往需要保护某些特定区域不受影响。这一步骤确保了只有预定区域会接触到处理工艺。

实现这种局部保护,最直接的方法就是使用遮蔽胶带,将其粘贴在需要保护的表面上。

胶带的优势在于其粘性,能够紧贴于零件表面。这一点,再加上其低廉的价格,使其得到了广泛应用。在大多数情况下,它确实可靠又实用,足以胜任任务。

为什么要更换遮蔽胶带?

但是,如果遮蔽胶带能满足基本需求,我们为什么还要寻找替代品呢?

的确,胶带能够保护需要遮蔽的区域,从而满足了基本要求(尽管效果并非总是完美,这一点我们稍后会详细探讨)。

正因如此,全球大多数公司在进行表面处理时,都会采用胶带进行防护。

然而,用作遮蔽的胶带存在诸多弊端,促使许多用户开始寻找替代方案。

其中主要问题包括:

  • 操作繁琐: 胶带必须手动逐片粘贴。这是一个高度重复的过程,不仅耗费时间,也增加了人力成本。
  • 一次性使用: 零件处理完毕后,遮蔽胶带必须撕除。它无法在不同零件间重复使用,每次都需重新粘贴。
  • 综合成本高: 尽管胶带本身单价不高,但考虑到前两点,它实际上是一种成本高昂的遮蔽技术。
  • 效果与精度: 胶带粘贴的精度难以保证,因遮蔽不当而导致零件损坏的情况时有发生。

不难看出,这些问题对企业而言可能造成严重损失,尤其是在处理过程中损坏零件的情况。

所有这些因素都促使企业积极寻找成本更低、实施更便捷的遮蔽胶带替代方案。

解决方案:复制胶泥 (Plastiform)

针对合作伙伴普遍遇到的这一难题,我们决定将复制胶泥 (Plastiform) 产品投入遮蔽应用测试。

与胶带不同,复制胶泥可以根据零件的形状定制成型。这一特性在创建可同时容纳多个零件的定制化模具方面,展现出无与伦比的优势。

如此一来,您只需一次操作即可为多个零件做好遮蔽,从而大幅提升生产力。

虽然制作模具的初始操作可能比贴胶带耗时略长,但由于模具可重复使用,从长远来看,您将节省下可观的操作时间!

制作定制化保护模具
使用 F50 XL 制作工件保护模具

而这还不是复制胶泥在零件保护应用中的唯一优势。

大多数表面处理工艺都不会损坏复制胶泥模具,使其成为一种极其可靠、可重复使用的保护工具。

总而言之,复制胶泥能为您带来以下核心优势:

  • 可重复使用:模具可多次重复使用,并能同时保护多个零件。
  • 高精度和密封性:其精度可达微米级,产品能如吸盘般紧密贴合表面,确保绝佳的遮蔽效果。
  • 高弹性:模具可具备高弹性,即使是形状复杂的零件也能轻松脱模。

综上所述,由复制胶泥制成的模具是替代遮蔽胶带的绝佳方案。它不仅克服了胶带的诸多弊端,其微米级的精度更确保了远超传统胶带的保护效果。

如何用复制胶泥替代胶带?

我们已经知道,复制胶泥是遮蔽胶带的一种理想替代品,但具体该如何操作呢?

从概念上讲,这非常简单——您只需在零件上制作一个保护模具或进行局部保护即可。

不同类型的模具

使用复制胶泥,您可以制作出不同类型的保护模具。每种模具都适用于特定的应用场景,因此,关键在于确定哪种方案最能满足您的需求。

话虽如此,有些模具比其他模具更常用。

在工业应用中,我们经常遇到相似的遮蔽难题,许多公司都面临着同样的挑战。

以下是一些常用模具的示例。它们涵盖了我们遇到的90%以上的零件遮蔽问题:

零件保护前后效果对比
使用复制胶泥为多个零件制作喷砂保护模具

这是一种块状模具,可以同时容纳大量小零件。

其原理是将零件无需处理的部分嵌入模具中,仅暴露待处理的表面。

两件式保护模具图示
两件式保护模具图示

这种模具的设计则更为精巧!

它通常用于形状复杂的零件,当您只想保护其中特定一部分时,它便能派上用场。

该模具由两部分组成,使用时需将其围绕零件合拢并固定。

即用型螺纹保护塞
用于螺纹保护的 Plastiform 保护塞

这并非传统意义上的模具,而更像是堵头或局部保护体。

这类保护通常是针对特定情况制作的,不一定都能重复使用。但其优势在于,相比胶带,它们的施用更方便,最重要的是,精度要高得多。

如何制作保护模具

制作模具或许是整个流程中最需要巧思的一步。

但与耗费数小时的繁琐胶带粘贴工作相比,这几分钟的巧妙构思又算得了什么呢?

我们在此不赘述局部保护体的制作,因为其施用方法与制作传统的复制胶泥印模类似。

让我们来区分两种主要情况:多零件保护模具和复杂形状保护模具。

对于第一种情况,即多零件保护模具,其制作过程通常相当简单,只需三步即可完成:

  • 第一步:选择产品。 根据需求选择合适的产品。通常,需要弹性时可选 F30 XL;需要更高刚性时则可选 F50 XL 和 F70 XL。
  • 第二步:制作基底。 找一个尺寸合适的容器,注入 2 到 5 厘米厚的产品,等待其固化(约 35 分钟)。
  • 第三步:定位零件。 将零件放置在已固化的复制胶泥基底上,确保待处理的表面朝上。然后,继续浇注产品,直至完全覆盖所有需要保护的区域。

大功告成!

只需等待产品聚合(至少 35 分钟),您的定制模具就制作完成了。有了它,您可以轻松取出处理好的零件,再放入下一批,循环往复。

接下来我们看看第二种情况,这类模具的制作相对复杂一些。

这类模具的针对性非常强,需要围绕零件的特定待保护区域进行包裹。

因此,其制作需要形成一个两部分(或多部分)的“蛤壳式”模具,并在模具两侧预留出夹紧区域,以便将其固定在零件上。

要制作这种模具,您有两种选择:

  1. 第一种选择:联系我们的专家,由我们为您定制模具。
  2. 第二种选择:参照第一类模具的制作方法,自行制作,但关键在于要设计成两部分或多部分结构。

如果您选择自行制作,最复杂的步骤是在设计阶段规划好夹紧机制。在动手之前,请务必仔细构思您的模具方案。

结论

恭喜您!通过这次探索之旅,我们共同寻找到了传统遮蔽技术的创新替代方案。

正如我们所见,依赖胶带的传统遮蔽方法存在诸多缺陷:成本高、耗时长、精度低,且操作繁琐。

相比之下,定制化的复制胶泥模具在表面处理的保护任务中,则展现出卓越的效果和可靠性。

对我们的解决方案还有疑问? 欢迎随时联系我们!

相关文章

ISO公制螺纹:一份完整指南

在各类通用应用中,ISO公制螺纹是无疑是最常见的螺纹类型。 其简洁的命名体系、清晰的几何形状和通行的标准,确保了零件装配的可靠性与一致性。 ISO公制螺纹与主要在北美使用的统一螺纹制 (UTS)(UNC和UNF)有相似之处,因为两者都采用60°的V形轮廓。其主要区别在于,UTS基于英寸,而ISO基于公制,这导致了测量体系的根本不同和零件的无法互换。 梯形螺纹(ACME)则以其29°的梯形轮廓,代表了另一类标准化螺纹。它在北美也很普遍,但主要用于动力传输,而非通用装配。 ISO标准几乎是全球通用的参考。除北美地区外,您遇到的大多数螺钉都将是ISO螺钉。 同时,它在北美的采用率也在不断增加,尤其是在汽车和电子等行业,尽管其普及程度尚不及世界其他地区。 什么是ISO标准?它有何用途? 当谈及螺钉、螺栓和其他紧固件时,一个根本性的问题是:如何保证它们无论产自何处,都能彼此兼容? 答案是:标准化。 ISO螺纹正是一套基于公制系统的标准,它精确定义了螺钉或螺栓的形状、角度和尺寸。 遵循这套规则,世界各地的制造商便可以生产出相互兼容的零件。例如,一枚德国制造的螺栓,将能完美地拧入一颗日本制造的螺母中,因为两者都遵循相同的标准。 当然,前提是两个零件都符合ISO要求,特别是ISO 261和ISO 724标准中规定的尺寸要求,以及ISO 68-1标准中的基本轮廓要求。 通过采用ISO螺纹,全球各行各业避免了高昂的返工成本,减少了错误率,并极大地简化了供应链管理。从汽车到航空航天,再到通用产品的制造,都适用相同的规则,而这种一致性就意味着时间和资源的节约。 如今,公制螺纹系列已在全球通用螺纹市场中占据主导地位。而这一地位的取得绝非偶然。 具体而言,在北美(以统一螺纹标准UTS为主)之外的几乎所有地方,ISO公制螺纹都是通用紧固件的标配。 这种主导地位源于早期推动公制体系的国际协议,而数十年的广泛应用,充分证明了这项协议的成功。 基本轮廓与几何形状 ISO螺纹的形状基于一个简单而对称的V形轮廓。 这个“V”形的顶角为60度,这意味着螺纹的两个牙侧以完全相同的角度倾斜。 要描述一个螺纹,三个主要尺寸至关重要: 为了更好地理解这个概念,可以将螺纹的啮合作用类比为钥匙与锁的配合。 钥匙的齿(如同螺栓的螺纹)对应锁芯内部的槽(如同螺母的螺纹)。 由于它们的角度和形状完全匹配,因此可以完美贴合。而分隔它们的微小空间,即所谓的“间隙”,由ISO 965标准中定义的公差等级严格控制。这确保了零件在转动时既不会卡涩,也不会出现过大的晃动。 高度、截平及实用尺寸 理论上,螺纹牙型的高度取决于螺距。 这个几何高度 (H) 精确等于螺距的 (√3/2) 倍,约等于螺距的0.866倍。 然而在实际应用中,螺纹的牙顶(精确截去H的1/8)和牙底(精确截去H的1/4)都经过了截平处理。这种平坦化的设计使螺纹更坚固、不易损坏且更易于制造。 ISO 68-1标准定义了这些要求,并允许外螺纹的牙底可采用圆弧过渡,其最小半径为螺距的0.125倍。 经过这些调整后,螺纹的螺纹工作高度为H的5/8,约等于螺距的0.541倍。 这个数字很重要,因为它在强度计算和加工公式中都至关重要。 在实践中,这个简单的规则可以用来估算攻丝钻头的直径:它约等于大径减去螺距。 例如,一个粗牙螺距为1.5毫米的M10螺钉,需要一个直径约8.5毫米的攻丝钻头。然而,对于精密作业,必须查阅ISO 965标准的表格,根据所需的公差等级核对确切尺寸。 外螺纹与内螺纹的极限尺寸 要正确定义一个螺纹,必须理解适用于螺栓(外螺纹)和螺母(内螺纹)的尺寸极限。… <a href="https://www.plastiform.info/zh/blog/gongchengxue/iso-gongzhi-luowen-yifen-wanzheng-zhinan/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon
螺栓螺距示意图

螺纹节距 – 定义与图表

螺纹节距是紧固件上相邻螺纹之间的距离。在英制紧固件中,它以每英寸螺纹数 (TPI) 来衡量;而在公制紧固件中,则以螺纹之间的毫米距离来计算。 在本文中,我们将深入探讨螺纹节距的含义、测量方法及其在精密机械领域中的重要性。 我们还将为您提供常见螺纹系列的详细图表,助您快速查找所需规格。 什么是螺纹节距?定义 在英制系统中,螺纹节距以每英寸螺纹数 (TPI)来表示。 一个标有”1/2-13″的螺栓,即表示其每英寸长度上有 13 圈螺纹。 在公制系统中,节距指的是螺纹之间的距离(以毫米为单位)。 例如,一个 M10 × 1.5 的螺栓,其螺纹之间的距离为 1.5 毫米。在公制中,节距值越小,螺纹越细密;反之,节距值越大,螺纹则越粗犷。 在给定长度内,粗牙螺纹的圈数较少,而细牙螺纹则更为密集。 正是这个看似简单的参数,决定了紧固件的固定强度、装配的便捷性,甚至其在振动环境下的耐用性。 螺纹节距影响着: 螺纹基础:节距、TPI 和直径 当您仔细观察一根螺杆时,会注意到两个关键的尺寸参数: 这两个数值只是从不同角度描述了同一种几何特征。 在数学上,您可以使用以下公式进行换算: 这是因为: 第三个重要尺寸是小径(牙底到牙底的距离),因为它决定了实际承载负荷的金属量。 在图表中,您常会看到一个名为拉伸应力区的派生值,记为: 工程师们常使用简单的轴向应力公式,例如: 其中 F 代表施加的拉伸力。 请记住这三个关键特性:大径、节距/TPI 和拉伸应力区。 您之后会看到的每一个图表,都只是将这些参数以清晰的格式呈现出来而已。 以下示意图可以帮助您直观地理解这些概念: 探索螺纹系列:类型与特性 螺纹系列是按直径和节距组合而成的标准分类,每个系列都具有独特的性能,适用于特定的应用场景。 这些系列通过特定直径对应的 TPI 或节距来区分,主要包括粗牙、细牙、8 牙和公制等不同类型。 了解它们的区别有助于您为项目选择合适的紧固件,从而避免错扣或脱扣等问题。 粗牙螺纹系列 (UNC/UNRC) 统一国家标准粗牙螺纹 (UNC)是北美地区最通用的螺纹标准。… <a href="https://www.plastiform.info/zh/blog/gongchengxue/luo-wen-jie-ju-ding-yi-yu-tu-biao/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon

ACME螺纹——完整指南

Acme螺纹在各类日常机械中极为普遍,您会在各种机器上看到它的身影。 然而,工程蓝图上那个独特的29°牙侧角为何如此统一?要找到确切的答案并非易事。 简单来说,这种几何形状并非偶然,而是一个精心设计的折衷方案,它在结构强度、制造简易性与长期耐用性之间取得了绝佳的平衡。 这种设计的性能一直优于许多其他的动力传动螺纹。 具体来说,29°的角度造就了宽阔平坦的螺纹牙侧。其精妙之处在于,这种设计能够均匀分布载荷,从而显著减少磨损,尤其是在重载工况下。 这一特性使其成为线性传动应用的理想之选。 它能确保连接件承受极端应力而不会过早失效。在设计或排查螺纹系统故障时,理解这些基本原理将大有裨益。 1分钟了解Acme螺纹 Acme螺纹看起来平平无奇,它由两个倾斜29°的牙侧以及平坦的牙顶和牙底构成。 这是一张示意图: 其设计的每个细节都目标明确: 这些特点的结合,使其轮廓强度比被其取代的矩形螺纹高出约25%,同时加工或滚压成形的速度也快得多。 问世一个世纪后,《机械手册》依然将其誉为动力传动螺纹的最佳通用选择。 这一赞誉充分说明,其设计的简洁与高效使其至今仍是行业首选。它既高度可靠,又广为人知。 三种主要变体 所有Acme螺纹都共享相同的29°牙侧角。 但其巧妙之处在于:它并非“一刀切”的设计。实际上,Acme螺纹有多种变体,每一种都为特定任务而生。 通用型(GP)是日常应用的主力型号。它有几种“配合等级”(如2G、3G或4G),这意味着其制造标准旨在确保一致的性能与便捷的互换性。 短齿Acme螺纹的螺纹高度较矮,对于壁薄或轮毂较短、无法容纳全齿深螺纹的零件来说,是绝佳的选择。 最后,定心Acme螺纹在大径处设计有更紧密的配合,以防止长螺杆在受压时出现晃动或发生“擦伤”(一种磨损形式)。 这一切意味着:无论您是在设计显微镜的对焦机构、强力台钳的钳口,还是小型机器人的升降臂这类精密装置,这三种主要类型几乎都能涵盖您在实际应用中遇到的所有情况(95%甚至更多)。 这些变体为工程师提供了极大的灵活性,让他们能够根据可用空间、预期载荷等因素,为具体项目选择最合适的螺纹类型。 关键在于为具体工况选择最合适的螺纹! 矩形螺纹,我们为何弃用它? 矩形螺纹曾因其极低的滑动摩擦而在动力传动领域独占鳌头,但其缺点也同样显著。 其加工速度慢,对刀具磨损严重,而且脆弱的直角尖角极易损坏。 简而言之:它维护困难,且需要更严格的工艺控制。 当Acme螺纹设计于19世纪90年代末问世时,它以相似的效率和更短的生产周期,迅速崭露头角。 现代滚压生产线能在数分钟内成形一米长的Acme螺纹。对于传统的矩形螺纹轮廓而言,这种速度堪称天方夜谭,因为其锐利的90°尖角使得材料在成形过程中极易开裂。 这一转变成为了制造效率的一次重大飞跃,使Acme螺纹在需要兼顾耐用性与生产速度的应用中,成为了当之无愧的首选。 “高效”究竟有多高效? 螺纹的效率因设计和工况而异,但相关研究已给出了明确的基准。 ASME的一项研究表明,润滑良好的Acme螺纹可达到40-50%的机械效率。矩形螺纹的效率或许会高出几个百分点,但这却是以牺牲耐用性为代价的。 对于大多数设计团队而言,更高的安全裕度和更简便的制造工艺,其价值远超于追求那微不足道的效率提升。 可以说,这种权衡恰恰凸显了Acme螺纹为何能成为一项实用标准的原因——它优先考虑的是整体性能,而非某个特定指标的微小改进。 切削与滚压 根据生产规模,螺纹有不同的制造方法。 在切削和滚压之间如何选择,标准非常明确。 对于单个原型,通常采用切削工艺。但若要进行成百上千件的批量生产,滚压的效率则要高得多。 滚压工艺的优势十分显著。 这种冷加工工艺能够硬化螺纹表面,使其疲劳寿命延长一倍! 此外,由于滚压成形不产生切屑,因此完全没有毛刺污染表面的风险。 螺纹牙侧也会变得光滑而光亮,无需任何额外处理即可获得更低的表面粗糙度(Ra)。 这一切都意味着,滚压成形的Acme螺纹通常可以承受数百万次循环,才会开始出现影响性能的明显磨损或间隙。 因此,滚压工艺带来的好处远不止是提高强度。 它还显著改善了螺纹的表面质量,使其成为要求性能高度一致的大批量制造的理想工艺。… <a href="https://www.plastiform.info/zh/blog/gongchengxue/acme/" class="read-more">Read More</a>

阅读文章
Button Decoration iconButton Decoration icon